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Support Operator Method Properties

• It has a local stencil.

• It has both cell-centered and face-centered unknowns.

• It is conservative.

• Material discontinuities are treated rigorously.

• It generates a symmetric positive definite matrix.

• It is second-order accurate.

• It reduces to the standard differencing scheme if the

mesh is orthogonal.

• It is not exact for linear functions.
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Mesh Description

Multi-Dimensional Mesh:

Dimension Geometries Type of Elements
1-D spherical,

cylindrical

or cartesian

line segments

2-D cylindrical

or cartesian

quadrilaterals or triangles

3-D cartesian hexahedra or degenerate

hexahedra (tetrahedra,

prisms, pyramids)

all with an unstructured (arbitrarily connected) format.

This presentation will assume a 3-D mesh.
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Diffusion Equation Set

α
∂Φ

∂t
−

−→
∇ ·D

−→
∇ Φ + σΦ = S

Which can be written

α
∂Φ

∂t
+

−→
∇ ·

−→
F + σΦ = S

−→
F = −D

−→
∇ Φ

Where

Φ = Intensity

−→
F = Flux

D = Diffusion Coefficient

α = Time Derivative Coefficient

σ = Removal Coefficient

S = Intensity Source Term
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Discretization Strategy

Cell-Center Equations – Integrate the Diffusion Equation

over a cell, and temporally discretize via Backwards Euler:

αn

(
Φn+1 − Φn

)

∆t
Vc +

∑

f

−→

Fn+1
c,f ·

−→
Ac,f

+ σn
c Φn+1

c Vc = Sn
c Vc

Face Equations – Flux continuity at every face:

−→

Fn+1
c1,f1 ·

−→
Ac1,f1 = −

−→

Fn+1
c2,f2 ·

−→
Ac2,f2

Boundary Face Equations – Robin condition:

β1
cΦc,f − β2

c

−→

Fn+1
c,f ·

−→
Ac,f = β3

cΦb

Note that:

• This discretization will be inherently conservative.

• No derivatives are taken across material boundaries –

a rigorous treatment.

•
−→

Fn+1
c,f ·

−→
Ac,f remains to be defined (in terms of Φ).
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Discretization Strategy

Unknowns for Φ are located at the cell centers and the cell

faces. Cell Equations will involve these seven unknowns:
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Face Equations will involve the thirteen unknowns from two

adjacent cells:
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This gives a local stencil in terms of cell-center and cell-face

unknowns.

The
−→

Fn+1
c,f ·

−→
Ac,f terms, on each face of a cell, must still be

defined in terms of the Φ’s within that cell.
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Support Operator Method Derivation:

Outline

The Support Operator Method for Diffusion on Hexahedra:

• Represent the diffusion term (
−→
∇ ·D

−→
∇ Φ) as the

divergence (
−→
∇ ·) of a gradient (

−→
∇ )

• Explicitly define one of the operators (in this case, the

divergence operator)

• Define the remaining operator (in this case, the gradi-

ent operator) as the discrete adjoint of the first operator

• The previous step is accomplished by discretizing a por-

tion of a vector identity

In other words, the first operator is set up explicitly, and

the second operator is defined in terms of the first operator’s

definition.
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Support Operator Method Derivation

Starting with a vector identity,

−→
∇ ·

(
φ
−→
W

)
= φ

−→
∇ ·

−→
W +

−→
W ·

−→
∇ φ ,

where φ is the scalar variable to be diffused and
−→
W is an

arbitrary vector, integrate over a cell volume:

∫

c

−→
∇ ·

(
φ
−→
W

)
dV =

∫

c
φ
−→
∇ ·

−→
W dV +

∫

c

−→
W ·

−→
∇ φ dV .

Each colored term in the equation above will be treated

separately.
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Support Operator Method Derivation

The Green term can be transformed via Gauss’s Theorem

into a surface integral,

∫

c

−→
∇ ·

(
φ
−→
W

)
dV =

∮

S

(
φ
−→
W

)
·
−→
dA .

This is discretized into values defined on each face of the

hexahedral cell,

∮

S

(
φ
−→
W

)
·
−→
dA ≈

∑

f

φf

−→
Wf ·

−→
Af .

The summation over faces (
∑

f ) includes six faces (+k, −k,

+l, −l, +m, −m), shown here for the intensity variable φ:
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Support Operator Method Derivation

The Red term is approximated by first assuming that φ

is constant over the cell (at the center value), and then

performing a discretization similar to the previous one for

the Green term:

∫

c
φ
−→
∇ ·

−→
W dV ≈ φc

∫

c

−→
∇ ·

−→
W dV ,

= φc

∮

S

−→
W ·

−→
dA ,

≈ φc

∑

f

−→
Wf ·

−→
Af .
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Support Operator Method Derivation

Turning to the final Blue term, insert the definition of the

flux,

−→
F = −D

−→
∇ φ ,

to get

∫

c

−→
W ·

−→
∇ φ dV = −

∫

c
D−1−→

W ·
−→
F dV .

Note that by defining the flux in terms of the remainder of

the equation, the gradient is being defined in terms of the

divergence.

The Blue term is discretized by evaluating the integrand at

each of the cell nodes (octants in 3-D) and summing:

−
∫

c
D−1−→

W ·
−→
F dV ≈ −

∑

n

D−1
n

−→
Wn ·

−→
FnVn .
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Support Operator Method Derivation

Combining all of the discretized terms of the colored equa-

tion and changing to a linear algebra representation gives

∑

f

φfWT
f Af = φc

∑

f

WT
f Af −

∑

n

D−1
n WT

nFnVn .

Rearranging terms gives

∑

n

D−1
n WT

nFnVn =
∑

f

(
φc − φf

)
WT

f Af .

Note that the right hand side is a sum over the six faces,

but the left hand side is a sum over the eight nodes.
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Support Operator Method Derivation

778
8

99:
:

;;<
<

f2

A f3W

W

WT
f1

f2

f1

A

f1A

W

f3

Af1

Wn

WT A WT A
f3 f3 f2 f2

In order to express the node-centered vectors, Wn and Fn,

in terms of their face-centered counterparts, define

JT
nWn ≡




WT
f1Af1

WT
f2Af2

WT
f3Af3




,

where f1, f2, and f3 are the faces adjacent to node n and

the Jacobian matrix is the square matrix given by

Jn =
[

Af1 Af2 Af3

]
.
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Support Operator Method Derivation

Using this definition for the node-centered vectors Wn and

Fn and performing some algebraic manipulations results in

∑

n

D−1
n Vn




WT
f1Af1

WT
f2Af2

WT
f3Af3




T

J−1
n J−T

n




FT
f1Af1

FT
f2Af2

FT
f3Af3




= W̃TΦ̃ .

where the sum over faces has been written as a dot product

of W̃ and Φ̃, which are defined by

W̃ =




WT
1 A1

WT
2 A2

WT
3 A3

WT
4 A4

WT
5 A5

WT
6 A6




, Φ̃ =




(φc − φ1)

(φc − φ2)

(φc − φ3)

(φc − φ4)

(φc − φ5)

(φc − φ6)




.
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Support Operator Method Derivation

To convert the short vectors involving the faces adjacent to
a particular node into sparse long vectors involving all of
the faces of the cell, define permutation matrices for each
node, Pn, such that




WT
f1Af1

WT
f2Af2

WT
f3Af3




= Pn




WT
1 A1

WT
2 A2

WT
3 A3

WT
4 A4

WT
5 A5

WT
6 A6




= PnW̃ ,

where, for example,

Pn =




0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0




if f1 (n) = 3,
f2 (n) = 5,
and f3 (n) = 2.

Note that Pn is rectangular, with a size of Nd×Nlf (3×6
for 3-D, 2 × 4 for 2-D, 1 × 2 for 1-D).
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Support Operator Method Derivation

Using the permutation matrices, and defining F̃ in a fashion

similar to W̃ (F̃ is a vector of FT
fAf for each cell face), gives

∑

n

D−1
n VnW̃TPT

nJ−1
n J−T

n PnF̃ = W̃TΦ̃ ,

or

W̃T

[
∑

n

D−1
n VnPT

nJ−1
n J−T

n Pn

]
F̃ = W̃TΦ̃ ,

or

W̃TSF̃ = W̃TΦ̃ ,

where

S =
∑

n

D−1
n VnPT

nJ−1
n J−T

n Pn .

The original vector
−→
W (on which Wf and W̃ are based)

was an arbitrary vector. It can now be eliminated from the

equation to give

SF̃ = Φ̃ ,

which can easily be inverted to give the fluxes (dotted into

the areas) in terms of the φ-differences, F̃ = S−1Φ̃. This

is exactly the form needed for the discretization of the
−→

Fn+1
c,f ·

−→
Ac,f term.
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Support Operator Method Derivation:
SPD Proof

The matrix S is symmetric, since

ST =

[
∑

n

D−1
n VnPT

nJ−1
n J−T

n Pn

]T

=
∑

n

D−1
n Vn

[
PT

nJ−1
n J−T

n Pn

]T

=
∑

n

D−1
n Vn

[
J−T

n Pn

]T[
PT

nJ−1
n

]T

=
∑

n

D−1
n VnPn

TJ−1
n J−T

n Pn

= S

The matrix S is positive definite, since

xTSx =
∑

n

D−1
n VnxTPT

nJ−1
n J−T

n Pnx

=
∑

n

D−1
n Vn

[
J−T

n Pnx
]T [

J−T
n Pnx

]

=
∑

n

D−1
n Vn

∥∥∥J−T
n Pnx

∥∥∥
2

> 0 if D−1
n Vn > 0 and J−T

n Pnx 6= 0

If S is SPD, then S−1 is also symmetric positive definite.

This is necessary, but not sufficient, to proving that the
entire method is SPD. See the associated paper for the gory
details.
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Second-Order Demonstration

Two-material problem, ratio = 10, GMRES/CG, Low-

Order Preconditioner, ε = 10−10, εpre = 10−9, SO

Problem Size (cells)
‖Φexact−Φ‖

2

‖Φexact‖2

Error Ratio

2 × 2 × 2 7.4950×10−2

4 × 4 × 4 2.4163×10−2 3.10
8 × 8 × 8 5.5245×10−3 4.37

16 × 16 × 16 1.5467×10−3 3.57
32 × 32 × 32 3.6797×10−4 4.20
64 × 64 × 64 9.6113×10−5 3.82

0.010 0.100 1.000
Average Cell Width (cm)

10−5

10−4

10−3

10−2

10−1

||φ
 −

 φ
ex

ac
t|| 2 /

 ||
φ ex

ac
t|| 2

Support Operator Method Results
for 3−D Random(0.5) Two−Material Problem

Data Points
Fitted Curve:  Error = 0.3661 Width1.9856
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Summary

• The Support Operator Methodology has been extended

to 3-D Unstructured Hexahedral Meshes.

• It has a local stencil, with both cell-centered and face-

centered unknowns.

• It is conservative and material discontinuities are

treated rigorously.

• It generates a symmetric positive definite matrix.

• It is second-order accurate.

• It reduces to the standard differencing scheme if the

mesh is orthogonal.
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